Still important ideas
Contrast the measurement of observable actions (and/or characteristics) with the theoretical constructs associated with those measurements
- Be able to identify examples of measurements versus constructs
- Describe what is meant by operational definitions
- Describe what is meant by validity versus reliability in measuring a construct
 - Provide an example of a measure that has high reliability and low validity?
 - Provide an example of a measure that has low reliability and high validity?
 - Describe the “target” example of reliability and validity
Contrast a dependent versus independent variable? - be able to identify them in an example
A study with a single independent variable would be associated with a univariate data set
- while a study with two variables (as in a correlation) would be associated with a bivariate data set
- a study with more than two variables would be associated with a multivariate data set
What are control versus experimental (treatment) variables? - be able to identify them in an example.
What is a within versus between participates design? - also known as within and between subject designs?
What is random assignment - what's it good for?
What is random sampling - what's it good for?
Populations versus samples - be able to define and identify examples of each
- Define and contrast a statistic with a parameter Lind, page 59, 60
- Sample data
- Population data
- Sample mean (\(\bar{x} \))
- Population mean (\(\mu \))

Describe what is meant by a placebo
Contrast the double-blind procedure with the single-blind procedure
Review the structure for organizing a memo

Contrast inferential statistics with descriptive statistics Lind, page 6
- Be able to identify each from a description of a study
Describe how quasi-experimental designs are especially vulnerable to
- selection bias (when participants are not randomly assigned to groups)
 - especially from subject variables like gender, or political party
- selection attrition (when some participants drop out of the study and create a bias in the sample)
Describe why we can talk about causation in ‘true’ experiments, but only relationships in correlational studies

Define continuous versus discrete variables Lind, page 9
Define categorical versus numerical data
- These are also known as qualitative versus quantitative data Lind, page 8
- Be able to identify each from examples
- Contrast verbal and coded labels of categorical data
 - Remember, that just because someone might code male = 1 and female = 2, this does not make “gender” a quantitative variable
- Describe what is meant by a binary variable
Levels of measurement: be able to identify each from an example Lind, page 9 - 13
- Nominal, Ordinal, Interval, Ratio

Define what is meant by naturalistic observation and field observation
Describe time series versus cross-sectional comparisons
Describe the “Likert Scales”
Describe surveys and what the goal of a survey would be
Contrast a census with a sample and contrast a population with a sample *Lind, page 7*
- Review situations where sample or census might be preferred
- Describe how a sample can be representative versus biased
- Define random selection and random assignment relative to sampling for administering survey
Describe the five reasons to sample as described by the Lind Text *Lind, page 225*
Define a sampling frame
- How might a “sampling frame” be different from a “target population”
Describe why larger samples can be preferable to smaller samples
Describe why a higher response rate percentage is better than a smaller response rate
- Describe why response rate is so important for a sample to remain unbiased

Define and contrast probability sampling with non-probability sampling
Describe these sampling techniques
- simple random sampling (this is a probability sampling technique) *Lind, page 226*
 - what is a random numbers table good for?
 - how would you find a random number using excel
- systematic random sampling (this is a probability sampling technique) *Lind, page 229*
- stratified random sampling (this is a probability sampling technique) *Lind, page 229*
 - proportional and disproportional stratified random sampling
- cluster sampling (this is a probability sampling technique) *Lind, page 230*
- convenience sampling (this is a non-probability sampling technique)
- snowball sampling (this is a non-probability sampling technique)
- judgment sampling (this is a non-probability sampling technique)
Describe what is meant by sampling error *Lind, page 233*

Describing Data Visually

Describe a frequency distribution *Lind, page 23, 29*
Describe how raw data can be organized and presented in a dot plot *Lind, page 96 - 98*
Describe what is meant by cumulative frequencies (be able to calculate them)
Describe what is meant by relative frequencies and cumulative relative frequencies (be able to calculate)
Describe a frequency histogram and a cumulative frequency histogram
Describe a frequency polygon and a cumulative frequency ogive
Describe a contingency table *Lind, page 113, 143*
Describe a tree diagrams *Lind, page 145*

Describe the different shapes of frequency histograms and be able to interpret examples
- skewed left, skewed right (negatively or positively skewed) *Lind, page 69, 106, 107*
- bimodal skewed left, bimodal skewed right
- skewed left with outliers, skewed right with outliers
- symmetric, multimodal symmetric, symmetric with outliers
- how does the skew of the distribution affect the order of the mean, median and mode *Lind, page 107*
Describe a Bar chart *Lind, page 24*
Describe a Simple line chart and be able to interpret one and when it should be used
Define a correlation
Describe and be able to interpret scatter plots
- strong positive pattern, strong negative, weak positive, weak negative, zero pattern, curvilinear pattern
- See also Lind 111, 112
Describe the relationship between the strength and direction of the correlation coefficient
Direction of correlation (positive, negative)
- Be able to identify a positive correlation from a correlation coefficient, a verbal description of the data, a scatter plot, or raw data
- Be able to generate examples of both negative and positive correlations
Strength of correlation (0 - +1.0 or 0 - -1.0)
- Be able to identify (or estimate) the strength of a correlation from a correlation coefficient, a scatter plot, or raw data
Correlation vs causation (when does a correlation imply, or provide evidence for causation?)
Describe linear vs curvilinear relationship -
- Be able to identify a linear or curvilinear relationship from raw data, a verbal description of data, or a scatter plot

Distributions

Describe the dot plot display and frequency distributions and how they represent central tendency and dispersion and shape
Define and contrast these three characteristics of distributions: central tendency (measure of location), dispersion (measure of variability), and shape

Describe what it means to say that the "Mean is a measure of 'position', (it lives on one location of the curve) and that the standard deviation is a distance score of the spread of the distribution
- Describe the definitional formula for the standard deviation?
- Describe the relationship between sample size and standard error
 - as n goes up, df goes up, and variability goes down
 - describe why larger samples can be preferable to smaller samples
- How does this fit with the “Law of Large Numbers” (Gilbert Reading)

Describe the empirical rule for the normal curve Lind, page 85 and 206

Normal distribution
Describe what is meant by a z-score and how area under the curve relates to a particular z-score
What is the probability that a score will fall above a z of 0 (50%)
What is the probability that a score will fall between -1 and +1 standard deviation of the mean? - 68%
What is the probability that a score will fall between -1 or +1 standard deviation of the mean? - 34% - notice, z = 1
What is the probability that a score will fall between -2 and +2 standard deviation of the mean? - 95%
What is the probability that a score will fall between -1 or +1 standard deviation of the mean? – 47.5% - notice, z = 2
What is the probability that a score will fall between -3 and +3 standard deviation of the mean? - 99.7%
What is the probability that a score will fall between -1 or +1 standard deviation of the mean? – 49.85% - notice, z = 3
Convert z scores to x scores *Lind, page 204 and 208*
raw score = mean + (z score)(standard deviation)

Convert x scores to z scores (consider how the formula vary between samples and population)
z score = raw score – mean / Standard deviation

Finding z scores from raw scores
Finding z scores from probabilities (or area, percent, percentiles, or proportion of curve)
Finding raw scores from z scores
Finding raw scores from probabilities (or area, percent, percentiles or proportion of curve)
Finding probabilities from z scores
Finding probabilities from raw scores

How are the following related: Area under the curve, percent, probability, and proportion of the curve
Convert a raw score (x) to a percentile rank using the normal curve
Convert a percentile rank to a raw score (x) using the normal curve
Convert an x to a percentile ranking using the normal curve
Be able to use the z-table on page 529 of our text
Given an example of a distribution with a specific standard deviation, be able to estimate
- the score for a z = 0, z = 1, or z = 2 (from worksheet)
- the standard deviation (from worksheet)
Contrast positively skewed and negatively skewed distributions and how that affects the order of the mean, median and mode *Remember, regardless of the skew, the median is always the middle score*
Describe bimodal distribution
Given an example of a distribution with a mean and specific standard deviation

Define the characteristics of the normal curve *Lind, page 202*
- Measured on continuous scale
 Note: when range is large we often treat a discrete variable as continuous (exam scores for example)
Measure of central tendency or “location”
Shape
- Possess clear central tendency
- Have only one peak (unimodal)
- Exhibit tapering tails
- Be symmetric around the mean (equal tails)
- Be bell-shaped
Domain
- theoretical and practical range in terms of standard deviations (or z scores)

Measures of Central Tendency
- What are the three measures of “location” or measures of “central tendency? *Lind, page 58*
- Mode: most commonly occurring score – also tallest point on normal distribution *Lind, page 66*
- Median: middle score also the midpoint score: (remember also the 50th percentile) *Lind, page 63*
- Describe procedure for finding quartiles *Lind, page 99, 100*
- Describe how box plots use medians, quartiles, maximum and minimum scores (*Lind, page 103*)
 Note: just plots the minimum score, maximum score and first three quartiles

- Mean: average score also balance point of distribution *Lind, page 59*
 - define what is meant by a “trimmed mean”
 - define what is meant by a weighted mean *Lind, page 63*
In a normal distribution mean = median = mode
In a positively skewed distribution mean > median > mode
In a negatively skewed distribution mean < median < mode
Note: the mean is most influenced by extremely large or extremely small scores
- which measure of central tendency is most affected by outliers
Each measure of central tendency is useful for which type of data (nominal, ordinal, interval and ratio)

Measures of variability (dispersion) *Lind, page 73, 74*
- range: smallest score subtracted from the largest score *Lind, page 75*
 - note range makes no reference to scores between the largest and smallest scores
- variance: standard deviation squared *Lind, page 78, 79*
- standard deviation: typical amount observations deviate on either side of their mean *Lind, page 78, 79*
 - \(\Sigma(x - \bar{x}) = 0 \) also \(\Sigma(x - \mu) = 0 \)

Describe the definitional formula for the standard deviation?

- Describe a “deviation score”
- memorize the standard deviation and variance (definitional) formula for samples and populations *Lind, page 79 - 82*
- how is definitional formula different from the calculation formula for the standard deviation
 - (be able to calculate standard deviation using calculation formula)
- how are the formula for standard deviations for samples different than for population
- how are standard deviation formula different from variance formulas
- describe what is meant by a deviation score
- what would happen if we took the average of the deviation scores (without taking the square or absolute values of each deviation)?
- describe the “mean deviation” - it uses the absolute values of the deviation scores *Lind, page 75, 76*
- what does it mean to say that the standard deviation is calculated relative to the mean
- be able to calculate standard deviation and variance from a set of scores
- be able to estimate it from a normal distribution when given an example deviation
- Note: standard deviation can also be estimated by range / 6

Describe what it means to say that the "Mean is a measure of ‘position’, (it lives on one location of the curve) and than the standard deviation is a distance score of the spread of the distribution

Provide examples of distributions that have the same mean but different variability and provide examples of distributions that have the same variability but different means (from worksheets in class and *Lind, page 203*)

Describe what is meant by
- “not unusual scores”, “unusual scores”, “outliers”, and “extreme outliers”

Connecting intentions of the researchers (when designing the studies) with experimental methodologies, and appropriate statistical analyses and graphs

Be able to identify each of these 7 methodologies from a description of a study
1. Confidence intervals - *Using distributions to estimate means*
2. t-test (2-means)
 - Please note: *t-tests always compares two means, there is one IV and one DV – typically is a bar graph*
3. One-way ANOVA (note: ANOVA stands for “analysis of variance”)
 - Please note: *one-way ANOVA usually compares more than two means, there is one IV and one DV*
 - You may see either a bar graph representation or a line graph
4. Two-way ANOVA
 - Please note: *two-way ANOVA usually compares more than two means, there are two IVs and one DV*
 - You may see either a bar graph representation or more likely, a line graph
5. Correlational methodologies
 - *Please note: correlation uses two quantitative variables that must be interval/ratio numeric scale – uses scatterplot*
6. Simple and multiple regression
 - *Uses correlations to predict values on one variable based on values for the other variable – uses scatterplot*
7. Chi Square
 - *Allows hypothesis testing for nominal data (just counting how many in each category)*

- define and contrast these methodologies in terms of type of DV and IV
- contrast quasi with true experiments (has to do with random assignment)
- identify the DV and IV and whether it is a between or within participant design
- also identify the most appropriate type of graph for each
Contrast inferential statistics with descriptive statistics
Be able to identify each from a description of a study
Describe why we can talk about causation in ‘true’ experiments, but only “relationships” in correlational studies
True experiments use random assignment that allows us to consider causal relationships, unlike quasi experiments
Define categorical versus numerical data
- These are also known as qualitative versus quantitative data
- Be able to identify each from examples
Levels of measurement: be able to identify each from an example - Nominal, Ordinal, Interval, Ratio

Describe the Central Limit Theorem *Lind, page 238*
Describe the three propositions derived from the central limit theorem

- Proposition 1: If sample size (n) is large enough, the mean of the sampling distribution will approach the mean of the population
- Proposition 2: If sample size (n) is large enough, the sampling distribution of means will be approximately normal, regardless of the shape of the population
- Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases standard error of the mean (SEM) decreases.

Describe the sampling distribution of sample means *Lind, page 234 and 245*
- what does this mean?
- how is this distribution formed? What is each point of data really mean in this distribution?
- how is this different from a population distribution of raw scores?
- how is the standard deviation different from the standard error of the mean (how are they similar?)
- what is the formula for standard error of the mean? *Lind, page 244*
- why is the standard error of the mean nearly always smaller than the standard deviation of the population?

Describe what is meant by a point estimate, and an interval estimate – what are they for? *Lind, page 259*
Contrast point estimates with confidence intervals *Lind, page 259*
- Point estimates are a more specific estimation, but less likely to be exactly right
- Confidence intervals provide a range of scores, but is more likely to include the population parameter
- Describe the factors will affect the size of a confidence interval (especially variability, sample size and confidence level)

Standard error of the mean *Lind, page 261*
Confidence Intervals with z scores and t scores *Lind, page 259 – 263 and 267-271*
Why do we care about the middle 95% of the curve?
- confidence intervals
- usual versus unusual scores
- hypothesis testing

Be able to calculate a confidence interval *Lind, page 259*
- for a z score distribution or a t-score distribution
- contrast z scores and t-scores *Lind, page 267*
- be able to find the appropriate z or t score for a confidence interval
- what happens to the t distributions as sample size (n) gets smaller?
- what is meant by degrees of freedom?
- for different confidence intervals (80%, 90%, 95%, 99%)
- review different ways of interpreting confidence intervals (from lecture)
- how can we make our confidence interval smaller?
- decrease level of confidence
- decrease variability
(remember, variability can be decreased through 1) an increase in sample size and 2) improvement of reliability of assessment tools and careful data collection techniques – our worksheet discussed this too)
Hypothesis tests
Describe what is meant by hypothesis testing *Lind, page 292 - 299*
Describe generally what is meant by a null hypothesis, and contrast it with the alternative hypothesis *Lind, page 294*

Describe what is meant by "we assume weird (or rare) things just don't happen"
Describe what is meant by a “critical z” or “critical t” or “critical value” or “critical statistic”
Describe the relationship between the observed z and critical z - which has to be bigger for significance?
Describe the relationship between the observed t and critical t - which has to be bigger for significance?
- which has to be bigger to reach significance, or to reject the null, or to claim \(p < \alpha \) (for example \(p < 0.05 \))
Describe how "not rejecting the null hypothesis" is different from "accepting the null hypothesis"
Describe why an observed z-score, t-score or an F-score that is less than one could never be significant

If the observed z falls beyond the critical z in the distribution (curve):
- then it is so rare, we conclude it must be from some other distribution
- decision considers effect size and variability
- then we reject the null hypothesis – we have a significant result
- then we reject the null hypothesis
- \(p < \alpha \) (for example \(p < 0.05 \))
- then we have support for our alternative hypothesis

If the observed z falls within the critical z in the distribution (curve):
- then we know it is a common score and is likely to be part of this null distribution, we conclude it must be from this distribution (either because the effect size is too small or because the variability is too big)
- then we do not reject the null hypothesis
- \(p \) is not less than \(\alpha \) (for example \(p > 0.05 \)) \(p \) is n.s.
- then we do not have support for our alternative hypothesis

The t-test - Remember, the numerator of our test statistics (z, and t) estimate the difference between groups (between means) while the denominators estimate the within group variability *Lind, page 306.*

How are single sample t-tests (*Lind, 306*) and independent 2-samples t-test (*Lind, 339*) similar and how are they different?
- How do the formulas compare and contrast
- How are they used differently
- How do they differ in terms of information you have about the population
- How do they differ in terms of the degrees of freedom
What is pooled variance – when is it used?

5 steps for hypothesis testing used for the t-test, ANOVA, correlation and Chi-Squared
1. identify research problem, describe null and alternative hypotheses,
2. identify decision rule, (alpha, d.f., critical value how do we find critical values?)
3. Calculations
 - be able to calculate t-scores, correlations, complete ANOVA table, and Chi-Squared values
4. make decision,
 - when do you reject the null hypothesis?
 - what does that mean relative to the alternative hypothesis?
 - what is our assumption about rare and common outcomes?
5. conclusion (what are the four parts?)

Be able to follow these five steps for all of our inferential statistics (z, t,F, r and identify \(\chi^2 \))
Describe generally what is meant by a null hypothesis, and contrast it with the alternative hypothesis
Describe what is meant by a “critical z”, “critical t”, “critical r”, “critical F” or “critical statistic”
Describe the relationship between the observed statistic and the critical statistic z
- which has to be bigger to reach significance, or to reject the null, or to claim \(p < \alpha \) (for example \(p < 0.05 \))
In lecture we discussed summary statements that include both descriptive statistics and inferential like the example presented here. Review how this statement reflects the output of the statistical analyses of excel. Be familiar with summary statements like this one for t-tests (two means, t-statistic and level of significance), ANOVA (list means, F-statistic and level of significance), and correlation (nature of relationship with strength and direction, r-statistic and level of significance). Examples of summary statements are presented in the lecture notes.

Here is an example for a t-test. The mean sensitivity for participants who completed the big meal was 24, while the mean sensitivity for participants who completed the small meal was 21. A t-test was completed and there appears to be no significant difference in the auditory sensitivity as a function of the size of the meal, \(t(4) = 1.96; \) n.s.

Here is an example for an ANOVA. The average number of cookies sold for three different incentives were compared. The mean number of cookie boxes sold for the "Hawaii" incentive was 14, the mean number of cookies sold for the "Bicycle" incentive was 12, and the mean number of cookies sold for the "No" incentive was 10. An ANOVA was conducted and there appears to be a significant difference in the number of cookies sold as a result of the different levels of incentive \(F(2, 12) = 6.73; \) \(p < .05 \).

The p-value method is also useful: The smaller the p value the stronger the evidence for rejecting the null hypothesis. Be able to use excel output to determine levels of significance

Hypothesis testing with z, t and F scores - describe the logic of when we reject the null hypothesis. What is the relationship between the observed statistic (also known as test statistic) and critical statistic Lind, page 296 - 297

Compare and contrast the z, t, r, and F distributions – when do you use each?
- describe what is meant by degrees of freedom (d.f.)

Level of significance (alpha = \(\alpha \))
- What is it and how do we determine our alpha level?
- Be able to draw where it is on a distribution
- Be able to interpret summary analysis tables like these
- Be able to interpret excel output for the r, t, and F statistic and regression

(see example of t-test output in homework worksheets and at the end of this study guide) Lind, page 342
- Be able to find the critical statistic for z, t, and F from a table and from the excel printout for different levels of alpha
- Be able to find means, df, p values, SS, MS, observed versus critical t (and F)
- Be able to find the critical z for different levels of alpha and 1 vs 2 tailed tests Lind, page 298, 299, 303

- What happens to our critical statistic when alpha gets larger?
- What happens to our critical statistic when we move from 2-tailed to 1-tailed test?

Remember, it is not possible to reject the null (find significant difference) if the results of the 1-tailed test is in the unpredicted direction. This is the gamble made when we use a 1-tailed test

- What is meant by conventional levels of significance? (- the common ones .05, .01 and .001)
- Statistical significance versus practical importance
- Please contrast “significance” meaning important or relevant with “significance” meaning statistically different (or statistically reliable)
- Describe how the variance of the distribution effects the likelihood of rejecting the null hypothesis
- larger variance makes it harder to reject (effect size has to be bigger) than a smaller variance
- describe the relationship between effect size, variance, and sample size

- Region of rejection - what is it? – what does that mean?
- Be able to draw where it is on a distribution
- Under what circumstances could you reject a null hypothesis (with alpha of 0.05) if your observed score (could be a z, t, or F) is less than 1? Answer: is never
- If we want to reject the null we want our z (or t) to be as big as possible and our p to be as little as possible
1 vs 2 tailed tests: how do we decide when to use each
- One vs two tailed tests - what are the pros and cons of each
- how does it affect our critical values for an alpha of 0.05?
- how do we construct the hypothesis for a one versus two-tailed test

Type I vs Type II errors *Lind, page 295*
- Be able to define them
- Be able to identify each type of error from a situation
- Which is false alarm, which is miss?
- What determines which is worse?
 - *consider criminal trial versus drug testing versus fire in the house*
- How is alpha related to Type I error?
- How is beta related to Type II error
- Please note: power of a test is sometimes called “sensitivity”

Analogy between hypothesis tests and confidence intervals
“The two-tailed hypothesis test at the 5 percent level of significance (α = .05) is exactly equivalent to asking whether the 95% confidence interval for the mean includes the hypothesized mean…”

ANOVA - Analysis of variance
How is ANOVA similar to and different from t-tests
Describe the five characteristics of the family of F distributions *Lind, page 361*
Describe what is meant by “unsatisfactory buildup of Type I error” *Lind, page 366*
- in class we also called it “alpha slippage”

5 steps for hypothesis testing
Be able to calculate – know these formula
 - Degrees of freedom within, Degrees of freedom between, Degrees of freedom total
 - Mean squares within, Mean squares between
 - F Ratio - know formula by heart $F = \frac{MS_{between}}{MS_{within}}$
 - notice which is the numerator and which is denominator
 - know definition

ANOVA - Analysis of variance
Be able to construct an ANOVA table and interpret an excel ANOVA output *Lind, page 374*
- Note: Sum of Squares “SS” will be provided
- be able to “fill in” missing values on the ANOVA table
Describe Total Variation = Treatment Variation + Random Variation *Lind, page 368, 369*
Explain why and how variances are used to answer questions about means
Variability within groups (be able to draw a picture)
- note also called within-groups variance
Variability between groups (be able to draw a picture)
- note also called among-groups or treatment variability
Random error how is it related to MS within and within group variability
Be able to perform a single factor ANOVA and interpret results
Be able to find critical values for F
What would an observed F of 1 (or less) suggest? – it would suggest that it is not a significant finding
What is a single factor, multi-level experiment? What is a multi-factor, multi-level experiment?
How are one-way vs two-way ANOVAs similar and different
Be able to interpret main effects and interactions from a graph
Correlation and regression

Define a correlation

Describe the relationship between the strength and direction of the correlation coefficient [Lind, page 391-398]

Scatter plots - be able to draw and interpret them

Direction of correlation (positive, negative)
- Be able to identify a positive correlation from a correlation coefficient, a verbal description of the data, a scatter plot, raw data, or a prediction line
- Be able to generate examples of both negative and positive correlations

Strength of correlation (0 - *1.0 or 0 - *1.0)
- Be able to identify (or estimate) the strength of a correlation from a correlation coefficient, a scatter plot, raw data, or the coefficient of determination (r^2)
- Describe what the strength of a correlation tells us about how well one variable will predict the other

What is an outlier, and how can it affect a correlation?

Correlation vs causation (when does a correlation imply causation? - never)

Describe what is meant by a spurious correlation

Describe linear vs curvilinear relationship
- Be able to identify a linear or curvilinear relationship from raw data, a description, or a scatter plot

Describe and be able to interpret scatter plots [Lind, page 394]
- strong positive pattern, strong negative, weak positive, weak negative, zero pattern, curvilinear pattern

Be able to calculate the correlation coefficient r

- Be able to calculate r from formula from lecture notes
- Be able to calculate r from formula from textbook [Lind, page 397]
- Be able to determine whether a specific correlation is statistically significant (using table provided in worksheet and also available here: ttp://www.gifted.uconn.edu/siegle/research/Correlation/corrchrt.htm

Compare and contrast multiple regression (multivariate regression) with simple regression (bivariate regression) [Lind, page 439-444]

- Be able to identify and interpret slopes for each component from Excel output
- Be able to identify independent and dependent variables
- Be able to solve for Y' given the slope, the y-intercept and a couple X scores

Describe the assumptions underlying linear regression
- For each value of x, there is a group of Y values
- These Y values are normally distributed
- The means of these normal distribution of Y values tend to lie on the straight line of regression
- The standard deviations of these normal distributions area equal
Familiarize yourself with the correlation matrix
- In what ways are scores repeated?
- Which scores are redundant and which are considered trivial? - It's the 1.0 along the diagonal are trivial.
- How would you determine which correlations are most predictive for each variable
- How would you determine which correlations are significant

Squared correlation coefficient (r^2)
- Be able to describe conceptually what it is
- Also known as the coefficient of determination (r^2) Lind, page 419-421
- Be able to interpret what it means
- Be able to calculate it

Define what is meant by linear regression and the regression line

- Also known as the prediction line
- Defined by the slope (b or b_1) and the intercept (a or b_0)
- Be able to estimate it from a verbal description of the data, or a scatter plot
- Be able to calculate it from raw data
- Be able to solve for Y' given the slope, the y-intercept and a couple X scores
- Be able to graph a line given the slope, the y-intercept and a couple X scores
- Be able to identify a predictive value for Y given a particular X score
- Be able to calculate and interpret slope (b), and Y-intercept (a)
- Be able to provide the general regression equation: $Y' = a + bX$
 - Please notice that this is the same as $Y' = bX + a$
- What does this formula equal? $\Sigma(Y - Y')$
- Describe what is meant by the standard error of the estimate
- If we wanted our regression line to be good at predicting Y' from X (which we would) we would hope that our standard error of the estimate would be small – why? [hint: remember the green lines on the scatter plots from lecture]
- Be able to recognize and calculate the standard error of the estimate

Standard error of the estimate

- Be able to describe conceptually what it is
- Describe how ($Y - Y'$) appears on the scatter plots in lecture (it's the green lines)
 - what do they mean?
- Understand the formula and be able to calculate it
- If the standard error of prediction is large, is the value of r large or small?

Squared correlation coefficient (r^2)

- Be able to describe conceptually what it is
- Also known as the coefficient of determination (r^2)
- Be able to interpret what it means
- Be able to calculate it

Regression uses the predictor variable (independent) to make predictions about the predicted variable (dependent)
Coefficient of correlation is name for “r”
Coefficient of determination is name for “r^2”
(remember it is always positive – no direction info)
Standard error of the estimate is our measure of the variability of the dots around the regression line (average deviation of each data point from the regression line – like standard deviation)
Plous text – Chapters 2, 3, 4, 17 & 18

Cognitive dissonance (Chapter 2)
Describe the “Parable of cognitive dissonance” - (Plous, page 22)
Describe the experiment by Festinger and Carlsmith (1959) - (Plous, page 23)
- describe why this is so counter-intuitive
Describe what is meant by pre-decisional dissonance in consumer behavior (Doob et al, 1969) (Plous, page 26 and 27)
Describe what is meant by post-decisional dissonance in voting behavior (Frenkel & Doob, 1976)
Please review the conclusions (page 29) especially the quote from Aronson (1972) and Plous’s statement:
“It is well known that changes in attitude can lead to changes in behavior, but research on cognitive dissonance shows that changes in attitude can also follow changes in behavior” (Plous, page 30)

Memory and hindsight biases (Chapter 3)
Describe the experiment by Loftus and Palmer (1974) - (Plous, page 33)
Describe the experiment by Bransford and Franks (1974) - (Plous, page 33-34)
Describe what is meant by hindsight bias, and how it might be reduced

Context dependence (Chapter 4)
Describe what is meant by the contrast effect (Plous, page 38)
When is it most likely to occur (Plous, page 41)
Describe the primacy effect in impression formation Plous, page 42)
Describe what is meant by the “halo effect”

Social Influences (Chapter 17)
Describe Social Facilitation (Plous, page 191)
Describe Social Loafing (Plous, page 192)
Describe Bystander Intervention and diffusional of responsibility (Plous, page 195)
Describe Social Comparison Theory (Plous, page 197)
Describe Social Analgesia (Plous, page 199)
Describe Solomon Asch’s experiment on conformity (Plous, page 200)
Describe the notion of Minority Influence (Plous, page 202)
Describe Groupthink (Plous, page 203)
- What are the best ways to avoid groupthink

Group Judgments and Decisions (Chapter 18)
Describe the Fundamental Attribution Error - (Plous, page 205)
Compare self-serving biases and group-serving biases (Plous, page 205)
Describe Group Polarization (Plous, page 207)
Describe how groups working together can outperform individuals working alone (Plous, page 211)
Describe what Plous means by “The Benefits of Dictatorship” (Plous, page 212)

Note: Lecture notes can be found at http://courses.eller.arizona.edu/mgmt/delaney/
t-Test: Two-Sample Assuming Equal Variances

<table>
<thead>
<tr>
<th></th>
<th>Big Meal</th>
<th>Small Meal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Variance</td>
<td>2.25</td>
<td>3</td>
</tr>
<tr>
<td>Observations</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Pooled Variance</td>
<td>2.622</td>
<td></td>
</tr>
<tr>
<td>Hypothesized Mean Difference</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>t Stat</td>
<td>3.0276</td>
<td>22024</td>
</tr>
<tr>
<td>t Critical one-tail</td>
<td>2.086</td>
<td></td>
</tr>
<tr>
<td>t Critical two-tail</td>
<td>2.571</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1463.862</td>
<td></td>
</tr>
<tr>
<td>F Critical</td>
<td>3.321</td>
<td></td>
</tr>
</tbody>
</table>

ANOVA

SUMMARY

<table>
<thead>
<tr>
<th>Groups</th>
<th>Count</th>
<th>Sum</th>
<th>Average</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troop 1</td>
<td>5</td>
<td>50</td>
<td>10</td>
<td>6.5</td>
</tr>
<tr>
<td>Troop 2</td>
<td>5</td>
<td>60</td>
<td>12</td>
<td>2.9</td>
</tr>
<tr>
<td>Troop 3</td>
<td>5</td>
<td>70</td>
<td>14</td>
<td>13</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F-crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>128</td>
<td>2</td>
<td>64</td>
<td>0.128</td>
<td>0.128</td>
<td>3.321</td>
</tr>
<tr>
<td>Within Groups</td>
<td>14</td>
<td>26</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>142</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Memory</th>
<th>Contain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Memory</td>
<td>Graded</td>
<td>35.7953</td>
</tr>
<tr>
<td>Contain</td>
<td>35.7577</td>
<td>5.3681</td>
</tr>
</tbody>
</table>

*P<.05

Regression

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heating $</td>
<td>Temp</td>
<td>Insulation</td>
<td>Age Furnace</td>
</tr>
<tr>
<td>2</td>
<td>Heating $</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Temp</td>
<td>-0.8115</td>
<td>0.9081</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Insulation</td>
<td>-0.2871</td>
<td>0.1335</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Age Furnace</td>
<td>0.5367</td>
<td>0.2756</td>
<td>0.4859</td>
</tr>
</tbody>
</table>

Analysis

Regression Statistics

- Multiple R: 0.8040
- R Square: 0.6482
- Adjusted R Square: 0.6370
- Standard Error: 0.1400
- Observations: 30

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Intercept</td>
<td>4.271</td>
<td>10.048</td>
</tr>
<tr>
<td>3</td>
<td>Temp</td>
<td>0.7701</td>
<td>0.7221</td>
</tr>
<tr>
<td>4</td>
<td>Insulation</td>
<td>0.6867</td>
<td>0.2941</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Intercept</td>
<td>4.271</td>
<td>10.048</td>
</tr>
<tr>
<td>3</td>
<td>Temp</td>
<td>0.7701</td>
<td>0.7221</td>
</tr>
<tr>
<td>4</td>
<td>Insulation</td>
<td>0.6867</td>
<td>0.2941</td>
</tr>
</tbody>
</table>